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Effect of an external magnetic field on the gas-liquid transition in the Heisenberg spin fluid

T. G. Sokolovska and R. O. Sokolovskii
Institute for Condensed Matter Physics, Svientsitskii 1, Lviv 290011, Ukraine

~Received 10 August 1998!

We present the theoretical phase diagrams of the classical Heisenberg fluid in an external magnetic field. A
consistent account of correlations is carried out by the integral equation method. A nonmonotonic effect of
fields on the temperature of the gas-liquid critical point is found. Within the mean spherical approximation this
nonmonotonic behavior disappears for short-range enough spin-spin interactions.@S1063-651X~99!51204-X#

PACS number~s!: 64.70.Fx, 75.50.Mm, 05.70.Jk, 61.20.Gy
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The behavior of magnetic fluids in an external field h
commanded more and more attention in recent years and
some peculiarities. In the presence of an external magn
field the orientational~magnetic! phase transition is absen
but there are the first order transitions between ferromagn
phases of different densities~e.g., gaseous and liqui
phases!. Physical properties of anisotropic fluids~to these
belong also, besides magnetic fluids, nematic liquid cryst!
are determined by the interplay between orientational
translational degrees of freedom. Therefore, by varying
magnetic field it is possible to effect structural properties
magnetic fluids, in particular, to change the region of
gas-liquid coexistence. Such investigations with a calcula
of phase diagrams were carried out for model spin syst
within the mean field~MF! approximation@1,2#. It was found
that for fluids of hard spheres carrying Ising spins an exte
magnetic field decreases the temperature of the gas-li
critical point. On the other hand, the presence of isotro
van der Waals attractions between molecules can lead to
inverse effect@2#. In Ref. @2# the fluid of hard spheres with
the classical Heisenberg spins and strong isotropic attract
was considered also. It was shown that at weak magn
fields there can be two first order phase transitions in
model: gas-liquid and liquid-liquid. In strong fields the we
liquid-liquid transition disappears.

The need to take into account orientational-translatio
correlations for the description of physical properties
magnetic fluids stimulated studies of the external field effe
by more complex techniques. The effect of an external fi
on the gas-liquid critical point was studied by the function
integration and Green function methods@3# for the quantum
Heisenberg ferrofluid and by the Monte Carlo and integ
equation methods for the classical one@4,5#. The pair poten-
tials of those models consisted of contributions of ha
spheres and of the spin-spin interaction~the so-called idea
Heisenberg fluid!. In these works the conclusion was that
external magnetic field favors the phase separation, i.e.,
application of the external field increases the gas-liquid c
cal temperature. Let us note that the results of Refs.@4,5# are
obtained for quite strong fields. In our point of view, it wa
the effect of small fields that is of special interest. This f
lows from the fact that at small fields orientational fluctu
tions are large and the corresponding correlations hav
long-range character. Therefore, small external influen
can result in significant changes of macroscopic propertie
magnetic fluids. Besides, the interplay between orientatio
PRE 591063-651X/99/59~4!/3819~4!/$15.00
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and spatial ordering can lead to an interesting behavior of
gas-liquid critical point at small fields. In this Rapid Com
munication we show that in the systems with the long-ran
enough spin-spin interactions the nonmonotonic effect of
external fields on the gas-liquid critical temperature tak
place. There is a temperature range where weak exte
fields suppress the gas-liquid phase separation. By the
gral equation method we show that while the range para
eter of the model potential decreases, this temperature in
val first gets smaller and then disappears.

We shall consider the model that was studied before
the case of zero external field@6,7#. The pair potential~ana-
logically to the papers@3,4#! is a sum of the hard spher
potential w(R12) for spheres of diameters and of the
Heisenberg spin-spin potentialF(R12,v1 ,v2),

F~R12,v1 ,v2!5J~R12!Ŝ1•Ŝ2 , ~1!

J~R!52K
~zs!2

zs11

exp@2z~R2s!#

R/s
, ~2!

whereŜi is a unit vector in the directionv i5(u i ,w i) of the
magnetic dipole momentm, referred to the uniform fieldB0
as thez direction. The potential of the particle interactin
with the field isv i52mB0cosui . In expression~2! the co-
efficient (zs)2/(zs11) is chosen to make the integral

I 5
N2

2VE dv1E dv2E
R12.s

dR12F~R12,v1 ,v2! f ~v1! f ~v2!

~3!

@where f (v) is a single-particle orientational distributio
function#, independent ofzs. The integralI describes a con-
tribution of the spin-spin potential into the free energy fun
tional within the MF approximation~see, for example,@8#!.
Therefore, within the MF approach the model phase diagr
is independent ofzs, if we use dimensionless units for th
temperaturet5kBT/K, the densityh5(N/V)(ps3/6), and
the external field strengthh5mB0 /KA3. For the free energy
of the hard sphere system we use the ‘‘quasiexa
Carnahan-Starling expression@9#. The MF phase diagram
obtained by the well-known double-tangent construction
presented in Fig. 1. One can see a nonmonotonic effect o
external field on the temperature of the gas-liquid critic
point at small values ofh. With the increase of the externa
R3819 ©1999 The American Physical Society
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field strength the gas-liquid critical point first moves dow
(h50.1,0.5), then moves up (h52), and last (h
55,10,20,̀ ) grows higher than the top of the zero field bi
odal. It should be noted that the model potential~2! in the
limit zs→0 belongs to a family of the so-called Kac pote
tials, for which the MF approach is accurate. Therefore,
lying on the MF results~Fig. 1! we can state that for long
range enough spin-spin interactions (zs→0) the
nonmonotonous field effect on the critical temperature d
take place. But for finite values ofzs we are forced to carry
out a more accurate investigation.

More consistent consideration of anisotropic fluids can
done on the basis of the integral equation method that all
one to calculate both the one-particle distribution funct
and the pair distribution function. The task consists@10# of a
solution of the anisotropic Ornstein-Zernike~OZ! equation

h~1,2!5c~1,2!1E r~3!h~1,3!c~3,2!d~3!, ~4!

where d(3)5dR3dv3 , r(1)5r f (v1), h(1,2) andc(1,2)
are the total and direct correlation functions of the syste
Since Eq.~4! contains the one-particle distribution functio
we need~besides a closure relation for the anisotropic O
equation! some additional relation for the determination
r(1). It can be thefirst equation of the Bogolubov-Born
Green-Kirkwood-Yvon hierarchy@this was used in Refs
@4,5# to obtain a numerical solution of Eq.~4!# or the Lovett
equation for anisotropic fluids@11#,

“v1
ln r~1!1“v1

v~1!

kBT
5E c~1,2!“v2

r~2!d~2!, ~5!

where“v1
is an angular gradient operator;v(1) is a poten-

tial of interaction with a uniform external field, its spheric
harmonic expansion is of the form

FIG. 1. Phase diagram of the Heisenberg fluid in the exte
magnetic field within the MF approximation. The results are
same for anyzs. The thick lines constitute the phase diagram~the
Curie line and the gas-liquid binodal! for h50. The thin lines are
the gas-liquid coexistence lines forh50.1,0.5,2,5,10,20,̀.
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v~1!52(
l

v lYl0~v1!. ~6!

For a self-consistent solution of Eqs.~4! and~5! we shall use
the method suggested in@7,12#. The method is based on th
algebraic representation of the Lovett equation for uniax
fluids. Using the general expansion for the direct correlat
function of linear molecules

c~1,2!5(
mnl
mnl

cmnl
mnl~R!Ymm~v1!Ynn* ~v2!Yll~vR! ~7!

and the exponential form of the one-particle distributi
function

f ~v!5Z21 expS (
l .0

AlYl0~v! D , ~8!

we obtain, following Refs.@7#, an algebraic representation o
the Lovett equation for a uniaxial fluid in the external fiel

Ll5(
mn

ClmYmnLn1Vl5(
m

ClmPm1Vl , ~9!

where all indices take the values greater or equal to 1,Vl

5v l /kBT, Cmn5*cmn0
110 (R)dR, Ymn5r^Ym1(v)Yn1* (v)&v ,

^•••&v5* f (v)(•••)dv, Ll5Al ( l 11)Al , Pl

5rAl ( l 11)(2l 11)^Pl(cosu)&v , Pl(cosu) is the l th order
Legendre polynomial. Let us note that the average val
^Pl(cosu)&v play the role of order parameters in anisotrop
fluids. Relations~9! are accurate, and their use, as well as
use of the integro-differential equation~5!, does not intro-
duce any approximation into the theory.

Due to Eq.~9! it turns out to be possible to obtain for ou
model @Eqs.~1! and ~2!# an analytical solution of the aniso
tropic OZ equation~4! within the mean spherical closure,

c~1,2!52F~R12,v1 ,v2!/kBT, R12.s,
~10!

h~1,2!521, R12,s.

Condition~10! for h(1,2) follows directly from the fact that
hard spheres do not overlap. The mean spherical closure~10!
restricts correlation functions of our model to those of t
form

f ~1,2!5 (
l 1l 2m

f l 1l 2m~R12!Yl 1m~v1!Yl 2m* ~v2!, ~11!

( l 1 ,l 250,1), and representation~9! results in equalities

A15A1r^uY11~v!u2&vE c111~R!dR1
v1

kBT
,

~12!

A15A1r^Y10~v!&vE c111~R!dR1
v1

kBT
.

Here we use the notations of Eq.~11! for harmonics of the
direct correlation functionc(1,2); v15mB0 /A3. Thus, the
use of the mean spherical closure yields for our model v
ishing of coefficientsAl with l .1 in Eq. ~8!, and the self-

al
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consistent one-particle distribution function in the me
spherical approximation~MSA! takes the form

f ~v!5exp@A1Y10~v!#Y E exp@A1Y10~v!#dv. ~13!

A uniaxial symmetry of our system leads to factorization
Eq. ~4! on the equations with differentm. At m561,

h11m~R12!5c11m~R12!1r^uY1m~v!u2&v

3E c11m~R13!h11m~R32!dR3 . ~14!

For m50 we have a system of integral equations that a
the Fourier transformation gains the matrix form

Hi j ~k!5Ci j ~k!1(
i 8 j 8

Cii 8~k!r i 8 j 8H j 8 j~k!, ~15!

where Hi j (k)5hi j 0(k), Ci j (k)5ci j 0(k), r i j
5r^Yi0(v)Yj 0(v)&v , indices take the values 0 and 1. Th
problem of a self-consistent solution of the anisotropic O
and Lovett equations has reduced at this stage to the solu
of Eqs. ~14! and ~15! under conditions~12! and the self-
consistentf (v) given by relation~13!. On the basis of the
Wertheim-Baxter factorization method@13# one can find the
analytical solution of such equations in the form of a set
algebraic equations. The detailed derivation of similar so
tions can be found in the literature, and therefore we o
any details and refer the reader to the previous publicat
@7,12#. The explicit form of the solution is quite unwield
and will be given in a future presentation. Here we point o
only that it is efficiently computable, and we use it for ca
culation of isotherms by the virial route to thermodynam
in order to locate the gas-liquid transition by the Maxw
construction.

The configuration of the MSA zero-field phase diagra
slightly differs from that of the MF theory~Fig. 1!. The MSA
via the virial route to thermodynamics demonstrates~Fig. 2!
the lack of the tricritical point@7# in the Heisenberg fluid
@Eqs.~1! and~2!# contrary to the MF and modified MF theo
ries @8#. Within the MSA the Curie line joins the gas-liqui
binodal at its vapor branch~see the insets to Fig. 2!. This
result is in whole agreement with the available zero-fi
simulations for the same model@6#: the liquid phase is fer-
romagnetic and the gaseous phase is mainly paramagn
except in the neighborhood of the critical point, where t
transition ferroliquid-ferrogas takes place. The quantitat
agreement with simulations is also quite perfect@see Fig.
2~a!#. In the insets to the figure one can distinguish the cr
cal point~CP, the top of the gas-liquid binodal! and the criti-
cal end point~CEP! in which the Curie line joins the binoda
In the temperature range fromtCEP to tCP three spatially uni-
form phases~isotropic gas, ferrogas, and ferroliquid! can ex-
ist. For long-range enough potentials this interval (tCP
2tCEP) decreases with the decrease ofzs ~see Table I! and
tends to zero for small values ofzs: the CP and the CEP
coincide and form the tricritical point, as is shown in Fig.
In practice we cannot distinguish the CP and the CEP by
MSA virial route already atzs50.1.
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FIG. 2. Phase diagram of the Heisenberg fluid in the exter
field for zs51 ~a!, zs52 ~b!, andzs53 ~c!. Lines are results of
the MSA. The thick line is the case of zero field. In the insets
vicinity of the ferrogas-ferroliquid critical point is shown, andI and
F mark isotropic and ferromagnetic domains. The thin lines are
gas-liquid binodals of the fluid in the magnetic field~the attached
numbers are the values of the fieldh). Simulation data@6# (h50)
for zs51 ~a! are shown as black circles~the gas-liquid coexist-
ence! and diamonds~Curie points!. It should be noted thatkBT/K
5T* /6 from Ref.@6#.



er
o
ga
he
su

a

g.

t-
d

-
p

tio

t o

fi-
rac-

wo
l
tive

in-
e
the
and

the
the

esses
y is

st
s
se
e
hen
t is

The
re-
p-

r

ts

RAPID COMMUNICATIONS

R3822 PRE 59T. G. SOKOLOVSKA AND R. O. SOKOLOVSKII
The effect of strong magnetic fields on the Heisenb
fluid @Eqs.~1! and~2!# consists of a considerable increase
the critical temperature. Strong external fields spread the
liquid coexistence region on the phase diagram, in ot
words, it favors the gas-liquid phase separation. This re
agrees with the conclusions of Refs.@3–5#. But it follows
from the MSA phase diagrams in Fig. 2 that small fields c
suppress the gas-liquid transition at finite values ofzs ~not
only in the limit zs→0). For example, one can see in Fi
2~a! (zs51) that the external field of strengthh50.1 totally
removes the phase separation at temperatures fromtCP(0.1)
51.002 to tCP(0)51.043. In the systems with more shor
range anisotropic interactions this temperature interval
creases. For example, in Fig. 2~b! (zs52) the temperature
interval, where the external fieldh50.1 removes the gas
liquid separation, is much less. For short-range enough
tentials even very weak fields do not suppress separa
e.g., for zs53 the same fieldh50.1 increasestCP @Fig.
2~c!#. Thus, the MSA predicts that the suppression effec

TABLE I. Coordinates of the gas-liquid critical point and i
distance from the critical endpoint at differentzs.

zs tCP hCP tCP2tCEP hCP2hCEP

2 1.1913 0.2119 0.0016 0.0185
1 1.0430 0.1587 0.0015 0.0151

0.5 0.9811 0.1316 0.0008 0.0063
0 ~MF theory! 0.938 0.117 0 0
r.
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small fields on the gas-liquid separation gets weak and
nally disappears for short-range enough spin-spin inte
tions.

The field effects may be explained by the existence of t
concurrent tendencies.The firsttendency is that the externa
field aligns the spins and, therefore, causes a more effec
attraction between particles. This raises the binodal~e.g., in
simple nonmagnetic fluids the binodal goes up when the
teraction increases!. The secondtendency takes place if th
susceptibility of the rarefied phase is larger than that of
coexistent dense phase. In this case the magnetization
the effective attraction between particles grow better in
rarefied phase. This decreases the energetical gain of
phase separation. Therefore, the second tendency suppr
the gas-liquid separation in the fluid. The second tendenc
very strong ath50 in the vicinity of the gas-liquid critical
point. In this region the vapor branch of the binodal almo
coincides with the Curie line~where the susceptibility tend
to infinity!, whereas the branch of the coexistent liquid pha
rapidly deviates from the Curie line. The proximity of th
vapor branch to the Curie line is the most considerable w
the tricritical point takes place, and the suppression effec
the most pronounced in the casezs50. The susceptibilities
of the coexistent phases level with increasingzs, and the
second tendency gets weak for short-range potentials.
similar external field effect has also been noticed in the
cent study of the Ising magnetic fluid within the cluster a
proach@14#.

We are grateful to I. M. Mryglod, for he compelled ou
attention to the problem.
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